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A framework for discontinuous fluctuation distribution
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SUMMARY

This paper describes a new numerical scheme for the approximation of systems of hyperbolic conservation
laws. It generalizes the fluctuation distribution framework by allowing the underlying representation of
the solution to be discontinuous. Steady-state numerical results are presented for the Euler equations of
gasdynamics. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The concept of fluctuation distribution was originally proposed nearly 25 years ago [1] as a potential
alternative to flux-based finite volume schemes for approximating hyperbolic conservation laws.
Major advances during the intervening period have provided genuinely multidimensional schemes
that can achieve very high orders of accuracy without spurious oscillations, for both steady-state and
time-dependent scalar equations, along with generalizations to nonlinear systems of conservation
laws. Details of both their foundations and some of the most important recent developments can
be found in [2] (the reader is referred to the references therein for a full account). However,
this has been matched by the progress of the finite volume approach, which has maintained its
popularity for simulating flows of realistic complexity, largely due to its ability to provide plausible
solutions in the most demanding of situations. Fluctuation distribution still lacks this robustness:
its advantage is that when it does provide a sensible solution, it is typically more accurate, often
by a significant margin, due to its more realistic representation of multidimensional flow physics.

One of the strongest challenges to the dominance of finite volume schemes has been the
emergence of the discontinuous Galerkin approach (see, for example, [2, 3]). This allies the discon-
tinuous, edge-based form associated with finite volumes (in which the conserved quantity within a
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control volume varies according to the net flux through the surface of that volume) with the contin-
uous, cell-based form associated with finite elements (in which the conserved quantity associated
with a test function varies according to the local flux variations). The resulting combination retains
much of the robustness of finite volumes, but is far more amenable to analysis and error estimation.
Its local, discontinuous, nature also makes it simple to enhance using adaptive techniques (guided
by the error analysis).

Fluctuation distribution does, however, have inherent advantages. Firstly, the most successful
schemes have been designed to retain at a discrete level the most important underlying physical
processes, and to do so in a genuinely multidimensional manner (a facility that the flux-based
schemes cannot match). Secondly, because they use the fluctuations (which are related to the local
flux variations, not the fluxes themselves) to predict the evolution of the conserved quantity, it
becomes far simpler to discretize source terms that represent processes that have a natural balance
with the fluxes. They are, in fact, very closely related to Petrov–Galerkin finite elements [4], but
the change in viewpoint allows the inclusion of upwinding and the suppression of unphysical
oscillations in a very natural manner.

Despite the advantages of the continuous representation of the solution used in the current frame-
work for fluctuation distribution, it still has drawbacks, e.g. the application of h- and p-adaptivity
and the construction of high-order schemes that are free of numerically induced oscillations are
hard to achieve. This paper seeks to address this issue by proposing a framework for fluctuation
distribution in which the underlying representation of the solution is discontinuous. This localizes
the representation so that adapting the underlying representation of the dependent variable in one
mesh cell does not have any knock-on effect, which requires corresponding modifications to be
made in the neighbouring cells. Unlike discontinuous Galerkin schemes the new approach will
only use flux variations, not the fluxes, to update the conserved variables, although there is clearly
a close relationship between the two. Results will be presented for steady-state test cases involving
the Euler equations of gasdynamics.

2. FLUCTUATION DISTRIBUTION

Consider the scalar conservation law given by

ut +∇·f=0 or ut +k·∇u=0 (1)

on a domain �, with appropriate initial conditions and boundary conditions imposed on the inflow
part of ��. Here k=�f/�u defines the advection velocity associated with the conservation law (1).
This equation has an associated fluctuation which, for a triangular mesh cell � (for simplicity, the
two-dimensional case will be considered from now on), is given by

�c=−
∫

�
∇ ·fd�=−

∫
�
k ·∇u d�=

∮
��

uk·nd� (2)

in which n represents the inward pointing unit normal to the cell boundary. When u is assumed to
have a piecewise linear continuous representation with values stored at the mesh nodes, the discrete
counterpart of �c is evaluated using an appropriate (conservative) linearization [2, 5]. Ideally, this
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allows the integration in Equation (2) to be carried out exactly, giving

�c=−S�k̃·∇̃u=−1

2

∑
i∈�

ui k̃·ni (3)

where S� is the cell area and the symbol ˜ indicates an appropriately linearized quantity. The
index i loops over the vertices of � and ni is the inward unit normal to the i th edge (opposite to
the i th vertex) multiplied by the length of that edge. This linearization is straightforward for the
cases considered in this paper [2, 5].

A simple forward Euler discretization of the time derivative leads to an iterative update of the
nodal solution values, which is generally expressed as

un+1
i =uni + �t

Si

∑
j∈∪�i

� j
i (�c) j (4)

where �t is the time step, Si is the area of the median dual cell surrounding node i (one-third of
the total area of the triangles with a vertex at i), � j

i is the distribution coefficient which indicates
the appropriate proportion of the fluctuation (�c) j to be sent from cell j to node i , and

⋃�i

represents the set of cells with vertices at node i . Conservation is assured as long as
∑

i∈� j
� j
i =1,

∀ j , where � j represents the set of nodes at the vertices of cell j , i.e. the whole of each fluctuation
is sent to the nodes. The time derivative term in this construction is included here purely as a
device for iterating to the steady state.

This framework has led to a range of upwind schemes, the most commonly used being the N
scheme (oscillation free but only first-order accurate), the LDA scheme (allows arbitrary order
accuracy at the expense of unphysical oscillations) and the PSI scheme (both free of unphysical
oscillations and second-order accurate, but tough to generalize to complex problems). Details of
all of these schemes can be found in [2].

3. A DISCONTINUOUS SCHEME

A continuous representation of u was assumed throughout the discussion in Section 2. In this case,
the integral of the conservation law (1) over � was divided between the mesh cells, leading to the
fluctuations (2)/(3) that were used to update u, using (4), in a conservative manner. If the discrete
representation of u is allowed to be discontinuous then∫

�
∇ ·fd�=

Nc∑
j=1

∫
� j

∇ ·fd�+
Ne∑
j=1

∫
| j

∇·fd� (5)

in which | is used to represent a mesh edge (face in three dimensions) and Nc, Ne are the numbers
of cells and edges, respectively. Each edge can be thought of as the limit of a rectangle as its
width tends to zero, as illustrated on the left-hand side of Figure 1, which leads to

�e=− lim
�→0

∫
��

∇·fd�= lim
�→0

∮
���

f ·nd�=
∫

|
[f ·n]d� (6)

in which [ ] represents the jump in a quantity across the edge, the sign of the difference being
dictated by the direction chosen for n. This is simply the integral along the interface of the
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Figure 1. The mesh structure for the discontinuous fluctuation distribution at an edge
(left) and around a node (right).

flux difference across it. The discontinuous Galerkin approach would treat each flux term in this
difference separately, first approximating it at the interface with an averaged ‘numerical’ flux, and
then sending its contribution to the evolution of the conservative variable to the mesh cell on the
corresponding side of the interface. In this work, �e is treated separately, as a fluctuation in a
degenerate, quadrilateral mesh cell.

Under the assumption that a conservative linearization exists for the flux difference [6],

�e=−1

2

Nq∑
k=1

wk k̃k ·n[uk] (7)

in which Nq is the number of quadrature points used, wk are the weights and k̃k =�f(ũk)/�u
(ũk being a conservative average value for u at the specified quadrature point). For the equations
considered here, Simpson’s rule is accurate enough to integrate (6) exactly.

In order to ensure that these edge fluctuations can be used as part of a positive scheme, (7) is
rewritten (using the numbering indicated on the left of Figure 1) as

�e= 1
2 k̂12 ·n(u1−u2)+ 1

2 k̂43 ·n(u4−u3) (8)

in which the k̂ ( �= k̃) are given by

k̂12= 1

3

(
k1+k2+ k3+k4

2

)
and k̂43= 1

3

(
k3+k4+ k1+k2

2

)
(9)

The fluctuation �e in (8) can now be distributed to the four cell vertices (two pairs of coincident
vertices) associated with the edge. The form shown in (8) indicates clearly how it can be distributed
in a positive manner according to the direction of the local advection velocity, i.e.

S1u1 → S1u1+3�t [̂k12 ·n]−(u1−u2)/2

S2u2 → S2u2+3�t [̂k12 ·n]+(u1−u2)/2

S3u3 → S3u3+3�t [̂k43 ·n]+(u4−u3)/2

S4u4 → S4u4+3�t [̂k43 ·n]−(u4−u3)/2

(10)
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where [ ]± signifies the positive/negative part of the quantity and Sk (k=1,2,3,4) is the area of
the mesh cell whose vertex is being updated. It is simple to make this edge distribution linearity
preserving, but this is unnecessary. The updates given by (10) are zero for any continuous function
because u1=u2 and u3=u4. Hence, any linear (continuous) steady state is preserved exactly by
the discontinuous scheme as long as it is preserved by the cell-based distribution. In other words,
this scheme is linearity preserving as long as the chosen form for the cell-based distribution is.

Each mesh node now corresponds to many cell vertices and multiple values of u. When the
new edge-based fluctuations are distributed along with the original cell-based fluctuations each u j

i
(the value associated with vertex i of cell j) receives contributions from precisely one cell and
two edges (subject to the application of boundary conditions), leading to the update

(u j
i )

n+1=(u j
i )

n+ 3�t

S j
(� j

i (�c) j +�k1i (�e)k1 +�k2i (�e)k2) (11)

in which the indices follow the annotation on the right-hand side of Figure 1 and S j is the area
of cell j . The distribution coefficients for the edge fluctuations can be found easily from (8) and
(10). Note that it is simple to show that the contribution due to degenerate polygon shown at the
vertex in the centre of the right-hand diagram in Figure 1 is zero.

The extension to nonlinear systems of equations of the form

U t +∇·F=0 or U t +−→
A ·∇U =0 (12)

is straightforward, assuming that conservative linearization exists [5, 6]. Here, −→
A represents the

relevant flux Jacobians, and appropriate initial and boundary conditions are applied on a domain
�. In this case, the cell fluctuations (2)/(3) become

�c=−
∫

�
∇·Fd�=

∮
��

F·nd�=−
∫

�
−→
A ·∇U d�=−S�

−̃→
A ·∇̃U (13)

and can be distributed as usual, using any of the standard methods for nonlinear systems [2]. The
edge fluctuations (6)/(8) are now

�e=
∫

|
[F·n]d�= 1

2
−̂→
A 12 ·n(U 1−U2)+

1

2
−̂→
A 43 ·n(U4−U3) (14)

in which
−̂→
A =−→

A (Û ) is defined using averages of the parameter vector variables [6] analogous to
those shown for scalar advection in (9). The �e could easily be distributed directly, but to retain the
positivity of the scalar schemes they are here decomposed using Roe’s flux difference splitting [6],
via the diagonalization of the matrix given by

−̃→
A ·n= R̃

−̃→
K R̃−1. Upwinding (and hence positivity)

is applied using the wave speeds that appear in the diagonal eigenvalue matrix
−̃→
K . The resulting

scheme is conservative, positive, linearity preserving, compact, upwind and continuous (when the
underlying distributions are). It is not, however, time accurate. Incorporating this property within
this framework will require use of the space–time formulation [2].
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Figure 2. Flows through indented channels with M∞ =0.5 (subcritical flow—top),
M∞ =0.7 (transcritical flow—middle) and M∞ =2.0 (supercritical flow—bottom) using

continuous (left) and discontinuous (right) schemes.

4. NUMERICAL EXPERIMENTS

Inviscid compressible fluid flow is simulated using the Euler equations. The test cases used involve
flow from left to right through a channel of dimensions [0,3]×[0,1] with additional symmetric
bumps situated on each wall giving a channel breadth of b(x)=1−B sin2(�(x−1)) in the interval
x ∈[1,2] and b(x)=1 elsewhere. Here B=0.1 has been chosen, and three free-stream Mach
numbers (M∞) specified at inflow to give subcritical, transcritical and supercritical flows. The
mesh used is a subdivision of a uniform 64×32 quadrilateral mesh in which the diagonals alternate
their orientation. Figure 2 shows contours of density for each of the three cases and illustrates
how the continuous and discontinuous schemes give similar results, although the latter appears
to capture discontinuities more sharply. In each case, the elliptic–hyperbolic wave decomposition
model of Mesaros and Roe [7] was used for the cell fluctuations while Roe’s flux difference
splitting [6] was used for the edge fluctuations. Similar results have been achieved using matrix
distribution schemes [2].

5. CONCLUSIONS

A framework has been presented within which fluctuation distribution can be carried out when the
underlying representation of the dependent variable is discontinuous. It has been successfully
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applied to a range of scalar conservation laws, and new results for the Euler equations of gasdy-
namics are presented here. Although there are many possible extensions, future research will
initially focus on improving the rate of convergence to the steady state, increasing the scheme’s
accuracy (all of h-, p- and r -adaptivity are possible), and applying the approach to time-dependent
problems.
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